Mostrando postagens com marcador Ciências da Natureza e suas Tecnologias. Mostrar todas as postagens
Mostrando postagens com marcador Ciências da Natureza e suas Tecnologias. Mostrar todas as postagens

sexta-feira, 16 de fevereiro de 2024

Terceira Lei de Newton


 

A terceira lei de Newton, conhecida como lei da ação e reação, afirma que, para toda força de ação que é aplicada a um corpo, surge uma força de reação em um corpo diferente. Essa força de reação tem a mesma intensidade da força de ação e atua na mesma direção, mas com sentido oposto.

Por meio da terceira lei de Newton, é possível perceber que todas as forças formam-se e cancelam-se aos pares, isto é, quando um corpo A faz força sobre um corpo B, esse corpo B resiste à aplicação dessa força por meio da reação, que atua sobre o corpo A. As forças de ação e reação possuem intensidades iguais, sentidos opostos e atuam em corpos diferentes. Além disso, essas forças produzem acelerações nos corpos A e B, no entanto, se olharmos os corpos A e B como um único sistema de corpos, veremos que as forças de ação e reação cancelam-se. É por esse motivo que dizemos que as forças de ação e reação são internas.
 

Forças de ação e reação e seus efeitos

Considere dois patinadores de gelo, A e B, posicionados em solo plano, não havendo quaisquer forças de atrito. Se o patinador A empurra o patinador B, ambos se afastam, uma vez que as forças de ação e reação atuam em corpos diferentes e em sentidos opostos. Apesar de as forças de ação e reação serem iguais, a aceleração adquirida por cada um dos patinadores é diferente, pois depende de suas massas (inércias).

A ideia de que as forças de ação e reação têm a mesma intensidade pode ser pouco intuitiva. Para tentar entender isso melhor, imagine uma situação em que um caminhão em movimento atinge uma pequena pluma. A força que o caminhão faz sobre a pluma é igual à força que a pluma faz sobre o caminhão, contudo, a aceleração produzida sobre o caminhão é muito pequena, em razão de sua grande inércia. É por isso que o efeito das forças de reação é muito mais expressivo em corpos de menor massa.

De modo similar, a Terra nos puxa para baixo e nós puxamos a Terra para cima com a mesma intensidade, todavia, a aceleração que é produzida sobre nós é muito maior do que aquela que é produzida sobre a Terra.

 Exemplos de pares de forças de ação e reação

Forças internas e externas

Imagine a seguinte situação: uma pessoa é deixada no interior de um veículo estacionado, livre para se mover, em uma rua plana. A pessoa pode aplicar forças contra qualquer uma das partes internas do veículo que ele não se moverá. Isso acontece porque a força feita pela pessoa sobre o veículo é igual à força que o veículo faz sobre a pessoa.

 Essa análise pode ser aplicada a toda matéria que se encontra em estado sólido, por exemplo. Em uma barra metálica, as forças de atração entre os átomos cancelam-se aos pares, de modo que o seu formato permanece sempre o mesmo. Não há motivo para que, em algum momento, essas forças deixem de se cancelar mutuamente, por isso, somente forças externas são capazes de realizar alguma mudança no estado de movimento dessa barra metálica ou deformá-la, por exemplo.


Fórmula da terceira lei de Newton

Para expressarmos matematicamente a terceira lei de Newton, dizemos que a força que um corpo A faz sobre um corpo B (FA,B) é igual em intensidade à força que o corpo B faz sobre o corpo A (FB,A), no entanto, como as duas forças atuam na mesma direção, mas em sentidos opostos, os seus sinais são diferentes:



FA,B – força que o corpo A faz em B;

FB,A – força que o corpo B faz em A.

A figura a seguir mostra uma situação na qual um corpo aplica uma força sobre outro corpo. Perceba que as forças de ação e reação atuam em corpos diferentes e em sentidos opostos.
A força que o canhão faz sobre a bola é igual e oposta à força que a bola faz sobre o canhão.
A força que o canhão faz sobre a bola é igual e oposta à força que a bola faz sobre o canhão.


Exemplos da terceira lei de Newton

  • Quando andamos, empurramos o chão para trás e o chão nos empurra para frente. Isso só acontece em virtude da existência de uma força de atrito entre as superfícies dos nossos pés e o chão.
  • A hélice de um helicóptero produz sua força de sustentação ao empurrar o ar para baixo, que, consequentemente, empurra-a para cima.
  • Ao dispararmos um projétil, é possível sentir que a arma de fogo sofre um recuo, uma vez que a força aplicada à bala é devolvida à arma em igual intensidade, porém, em sentido oposto.
  • Quando sobem, os foguetes expelem grandes quantidades de gases aquecidos para baixo, desse modo, esses gases empurram o foguete para cima.



Força peso e força normal

É comum pensarmos que as forças peso e normal formam um par de ação e reação, no entanto, isso não é verdade. A força peso é a força que os astros fazem em todos os corpos que se encontram sujeitos ao seu campo gravitacional. Quando a Terra nos puxa para baixo, por exemplo, puxamos a Terra para cima, no entanto, se houver alguma superfície que possa nos impedir de continuarmos caindo em direção ao centro da Terra, faremos sobre essa superfície uma força de contato. Consequentemente, essa superfície reagirá à aplicação dessa força com uma reação, chamada de força normal.


Quando nos encontramos alinhados perfeitamente com a horizontal, a força normal e a força peso atuam na mesma direção e em sentidos opostos, cancelando-se. No entanto, por atuarem no mesmo corpo, não podem ser consideradas como pares de ação e reação.

Quando nos encontramos em uma superfície inclinada, as forças normal e peso não atuam na mesma direção, portanto, não se cancelam completamente. Desse modo, uma das componentes da força peso atua na direção do plano, fazendo com que deslizemos, caso não haja alguma força de atrito.

 

Fonte: Brasil Escola
Autor: Rafael Helerbrock - Professor de Física

Veja mais sobre "Terceira lei de Newton" em: https://brasilescola.uol.com.br/fisica/terceira-lei-newton.htm

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!

Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco



Segunda Lei de Newton


 

A segunda lei de Newton determina que se aplicarmos força sobre um objeto, ela produzirá movimento, cuja aceleração é proporcional à sua massa. Ela é calculada por meio do produto entre a massa do corpo e a sua aceleração e faz parte do conjunto das leis de Newton, que são uma das principais sustentações da Mecânica Clássica.

O que diz a segunda lei de Newton?

A segunda lei de Newton ou princípio fundamental da dinâmica compõe o conjunto de leis de Newton que fundamentam a Mecânica Clássica. Observe o enunciado dessa lei:

A força resultante que age sobre um corpo é igual ao produto da massa do corpo pela sua aceleração.


Resumidamente, podemos dizer que se infligirmos a ação de uma força resultante não nula sobre um objeto, este manifestará uma aceleração de mesma direção e sentido dessa força. Assim, a força resultante é proporcional tanto à massa quanto à aceleração, mas inversamente proporcional à inércia (capacidade de resistência ao movimento) do corpo.

Vale ressaltar que caso as forças resultantes gerem um valor nulo, isso significa que o corpo está em equilíbrio, portanto não se moverá. Além disso, como a força resultante é uma grandeza vetorial, a orientação e o módulo devem ser considerados.
 

  • Direção e sentido: depende da orientação das outras forças atuantes no corpo.
  • Módulo: calculado pela fórmula da segunda lei de Newton.

 

Qual a fórmula da segunda lei de Newton?

Para resolver os exercícios que envolvem a segunda lei de Newton, utilizamos a sua fórmula:

F=m∙a

 

F  → força resultante, medida em Newton [N]
m  → massa, medida em quilogramas [kg]
a  → aceleração, medida em [m/s2]

    .

Exemplos da segunda lei de Newton

Em nosso cotidiano, encontramos diversos casos da segunda lei de Newton em ação. Por exemplo, quando empurramos um objeto, como podemos ver na imagem, fazemos força sobre ele a fim de movê-lo. Contudo, quanto mais massa tiver esse objeto, maior será a força empregada sobre ele."

Outro exemplo é quando participamos de algum esporte que exige chute ou tacada, como tênis, queimada ou vôlei, em que aplicamos força sobre a bola ou raquete a fim de obter um movimento.

É importante destacar que utilizando a fórmula da segunda lei de Newton é possível fazer cálculos em relação a isso. Veja abaixo algumas situações que ilustram  essa questão.
 

Exemplo 1: Um objeto de massa 100 g  é acelerado a 50 m/s2. Qual o valor da força aplicada sobre ele?

Resolução:

Utilizando a fórmula da segunda lei de Newton, é possível encontrarmos o valor da força:

F=m∙a

Como a massa está expressa em gramas, precisamos converter para quilogramas, sendo que 100 g = 0,1 kg:

F = 0,1∙50

F = 5 N

Assim, a força aplicada sobre o objeto é de 5 N.
 

 

Exemplo 2: Um objeto de massa 2000 g  tem uma força de 100 N aplicada sobre ele. Qual é o valor da sua aceleração?

Resolução:

Utilizando a fórmula da segunda lei de Newton, é possível encontrarmos o valor da aceleração:

F=m∙a

Como a massa está expressa em gramas, precisamos converter para quilogramas, sendo que 2000 g = 2 kg :

100 = 2∙a

100/2 = a

a = 50 m/s2

Então, a aceleração sobre o objeto é de 50 m/s2.

 

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!

Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco

Primeira Lei de Newton


1ª Lei de Newton

 

Introdução 

 

Ao empurrar uma caixa sobre uma mesa é notório que ela só se movimenta enquanto estiver exercendo sobre ela uma força. Se a força cessar, ou seja, se parar de empurrá-la, ela logo pára. Tal observação levou o filósofo grego Aristóteles a estabelecer a seguinte conclusão: “Um corpo só permanece em movimento se estiver atuando sobre ele uma força”. Esta interpretação, formulada no século IV a.C., de Aristóteles foi aceita até o Renascimento (séc. XVII). 

Galileu Galilei dizia que o estudo sobre os movimentos requeria experiências mais cuidadosas. Após a realização de vários experimentos Galileu percebeu que sobre um livro que é empurrado, por exemplo, existe a atuação de uma força denominada de Força de Atrito, e que tal força é sempre contrária à tendência do movimento dos corpos. Assim, ele percebeu que se não houvesse a presença do atrito o livro não pararia se cessasse a aplicação da força sobre ele, ao contrário do que pensava Aristóteles.

As conclusões de Galileu podem ser sintetizadas da seguinte maneira: Se um corpo estiver em repouso, é necessária a aplicação de uma força para que ele possa alterar o seu estado de repouso. Uma vez iniciado o movimento e depois de cessado a aplicação da força, e livre da ação da força de atrito, o corpo permanecerá em movimento retilíneo uniforme (MRU) indefinidamente. 

Os experimentos de Galileu levaram à conclusão da seguinte propriedade física da matéria: inércia. Segundo essa propriedade, se um corpo está em repouso, ou seja, se a resultante das forças que atuam sobre ele for nula, ele tende a ficar em repouso. E se ele está em movimento ele tende a permanecer em movimento retilíneo uniforme. Anos mais tarde, após Galileu ter estabelecido o conceito de inércia, Sir Isaac Newton formulou as leis da dinâmica denominadas de “as três leis de Newton”.

Newton concordou com as conclusões de Galileu e utilizou-as em suas leis. Primeira Lei de Newton Também chamada de Lei da Inércia, apresenta o seguinte enunciado: Na ausência de forças, um corpo em repouso continua em repouso, e um corpo em movimento, continua em movimento retilíneo uniforme (MRU).  

Movimento Retilíneo Uniforme é o movimento no qual a velocidade permanece constante durante todo o percurso de um corpo. A velocidade é constante e diferente de zero (V≠0) e a aceleração é nula (a = 0). Assim, tanto Galileu quanto Newton perceberam que um corpo pode se movimentar sem que nenhuma força esteja atuando sobre ele.  

 

Fonte: Brasil Escola

 

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!

Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco

 

quinta-feira, 15 de fevereiro de 2024

Ácidos mais comuns na química do cotidiano


 

Ácidos se fazem muito presentes em nosso cotidiano, estão presentes até mesmo na nossa alimentação, como por exemplo, nas frutas cítricas encontramos os ácidos cítrico e ascórbico (vitamina C).

Vejamos as características e utilização dos ácidos mais comuns:



Ácido sulfúrico (H2SO4): ácido forte (altamente corrosivo) consumido em enormes quantidades na indústria petroquímica, na fabricação de papel, corantes e baterias de automóveis.



Ácido fosfórico (H3PO4): os sais (fosfatos e superfosfatos) derivados deste ácido têm grande aplicação como fertilizantes na agricultura.


Ácido fluorídrico (HF): esse ácido possui a capacidade de corroer o vidro, sendo por isso armazenado apenas em frascos de polietileno.

Em virtude de propriedade de corrosão, o ácido fluorídrico é usado para gravar sobre vidro. Os vidros de automóveis têm uma numeração na parte inferior, esta é gravada com o auxílio desse ácido.



Ácido nítrico (HNO3): um dos ácidos mais fabricados e consumidos pela indústria.

Utilização: fabricação de explosivos, como nitroglicerina (dinamite), trinitrotolueno (TNT), trinitrocelulose (algodão pólvora), salitre (NaNO3, KNO3) e da pólvora negra (salitre + carvão + enxofre).



Ácido clorídrico (HCl): reagente muito usado na indústria e no laboratório.

Na construção civil é usado para remover respingos de cal (após a caiação) de pisos e azulejos. Neste caso é mais conhecido como ácido muriático: agente de limpeza de alta potencialidade.

O HCl se faz presente em nosso próprio corpo. É encontrado no suco gástrico e tem o papel de auxiliar na digestão.


Ácido acético (CH3COOH): ácido componente do vinagre, tempero indispensável na cozinha, usado no preparo de saladas e maioneses.


Ácido carbônico (H2CO3): as águas e refrigerantes gaseificados têm seu diferencial (mais refrescante) graças a este ácido, ele é formado na reação do gás carbônico com a água:

CO2 + H2O → H2CO3

 

Fonte: Brasil Escola
Autora: Líria Alves - Graduada em Química

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!

Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco

terça-feira, 3 de outubro de 2023

Associação de Resistores


 

Associação de resistores é o circuito elétrico formado por dois ou mais elementos de resistência elétrica ôhmica (constante), ligados em série, paralelo ou ainda, em uma associação mista. Quando ligados em série, os resistores são percorridos pela mesma corrente elétrica, quando em paralelo, o potencial elétrico é igual para os resistores associados.


Resistores

Resistores são elementos cuja principal finalidade é a geração de calor mediante a passagem de corrente elétrica. A resistência elétrica, por sua vez, diz respeito à característica dos resistores, que faz com que eles ofereçam resistência à movimentação de cargas em seu interior.

Na figura, temos um resistor cerâmico, presente em grande parte dos circuitos elétricos.


Quando um resistor apresenta resistência elétrica constante, para quaisquer valores de potencial elétrico que for aplicado entre os seus terminais, dizemos que se trata de um resistor ôhmico.


Resistência equivalente

Resistência equivalente é um recurso utilizado para simplificar circuitos elétricos formados por associações de resistores, ou até mesmo para obtermos resistências elétricas diferentes daquelas que dispomos. Quando calculamos a resistência equivalente buscamos encontrar qual é a resistência de um único resistor que equivale à resistência do conjunto de resistores.

 

Associação de resistores em série

Quando ligados em série, os resistores são percorridos pela mesma corrente elétrica. Na ligação em série, todos os elementos ligados estão conectados no mesmo ramo do circuito, de modo que o terminal de um dos resistores está diretamente ligado ao terminal do próximo resistor. A figura a seguir mostra como é feita uma ligação em série e como essa ligação é representada:
Na ligação em série, a corrente elétrica é igual para todos os resistores.

Quando os resistores são ligados em série, o potencial que é aplicado sobre os terminais do circuito é distribuído entre as resistências, em outra palavra, toda a tensão aplicada cai gradativamente ao longo de um circuito que é constituído por resistores em série.

Nesse tipo de ligação, as resistências elétricas individuais somam-se, de modo que a resistência equivalente do circuito é dada pela soma das resistências ligadas em série. Observe:

Na ligação em série, a resistência equivalente é igual à soma das resistências.
 

A seguir, mostramos a fórmula usada para calcular a resistência equivalente para resistores em série:

REQ – resistência equivalente (Ω – ohm)
 

Associação em paralelo

Na associação em paralelo, os resistores encontram-se ligados ao mesmo potencial elétrico, no entanto, a corrente elétrica que atravessa cada resistor pode ser diferente, caso os resistores tenham resistências elétricas diferentes. 

Na associação em paralelo, a corrente elétrica é dividida entre os diferentes ramos do circuito.

A associação em paralelo é obtida quando os resistores são ligados de modo que a corrente elétrica divide-se ao passar por eles. Nesse tipo de associação, a resistência elétrica equivalente será sempre menor do que a menor das resistências.

Para calcularmos a resistência equivalente na associação de resistores em paralelo, fazemos a soma do inverso das resistências individuais:


Para o caso em que se deseja calcular a resistência de somente dois resistores em paralelo, é possível fazê-lo por meio do produto pela soma das resistências individuais. Confira:


Outro caso específico, é aquele em que N resistores idênticos encontram-se ligados em paralelo. Nesse caso, para calcularmos a resistência equivalente do circuito, basta que se divida o valor da resistência individual pelo número de resistores:


 

 

Associação mista de resistores

Na associação mista de resistores, pode haver tanto ligações em série quanto ligações em paralelo. Observe a figura a seguir, é possível ver diversos resistores ligados em série, conectados a dois resistores que estão ligados em paralelo entre si:


Para solucioná-la, é necessário que se resolva separadamente, os resistores que encontram-se ligados em paralelo e os resistores que encontram-se ligados em série.

Quando houver resistores em série fora da ligação em paralelo, é possível resolver a associação em paralelo para, em seguida, somarmos o resultado obtido à resistência dos demais resistores ligados em série;

Nesse tipo de associação, resolve-se a resistência equivalente entre R2 e R2 primeiro.

Quando houver resistores ligados em série dentro de uma ligação em paralelo, é necessário que se some as resistências para que, em seguida, realizemos o cálculo da resistência equivalente em paralelo.

Nesse tipo de associação, inicialmente ,soma-se R1 e R2, depois, R3 e R4.
 

FONTE: BRASIL ESCOLA

 

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!
Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco

 

quarta-feira, 13 de setembro de 2023

Eletrodinâmica: Primeira Lei de Ohm


 

 A primeira lei de Ohm determina que a tensão é proporcional à corrente elétrica para uma resistência constante em materiais ôhmicos. Já os dispositivos não ôhmicos não obedecem a essa lei, ainda que sejam calculados pela mesma fórmula que os ôhmicos. O gráfico obtido por meio dessa lei é uma reta inclinada que representa a resistência elétrica e nos mostra que à medida que aumentamos o valor da ddp, a corrente também aumenta.

 

Resumo sobre a primeira lei de Ohm

  • A primeira lei de Ohm relaciona a tensão elétrica e a corrente elétrica que geram uma resistência elétrica.

  • A resistência é diretamente proporcional ao potencial, mas inversamente proporcional à corrente.

  • A fórmula para o cálculo da primeira lei de Ohm é: resistência igual à diferença de potencial (ddp) dividida pela corrente.

  • O gráfico da ddp pela corrente resulta em uma reta diagonalizada que representa a resistência.

  • Usamos a primeira lei de Ohm sempre que queremos saber a resistência, a ddp ou a corrente em um circuito.

     

    O que diz a primeira lei de Ohm?

    A primeira lei de Ohm diz que a diferença de potencial elétrico entre dois pontos de um resistor elétrico é proporcional à corrente elétrica que o atravessa. Assim, há uma resistência elétrica constante. Para que isso ocorra, é necessário que o resistor elétrico seja mantido a uma temperatura constante.

  • Resistores ôhmicos: quando um resistor apresenta esse tipo de resistência para um determinado intervalo de tensão elétrica, temos os chamados resistores ôhmicos.

  • Resistores não ôhmicos: quando os dispositivos não possuem essa proporcionalidade entre a tensão e a corrente, eles são conhecidos como não ôhmicos. Mas ainda que eles não obedeçam à primeira lei de Ohm, a fórmula também pode ser usada em seus cálculos. A maioria dos equipamentos atuais são não ôhmicos, como as calculadores e celulares.

Importante: O potencial elétrico também é conhecido como ddp ou tensão elétrica.

Fórmula da primeira lei de Ohm

A fórmula utilizada para calcular a primeira lei de Ohm é

Ou:


  • U: diferença de potencial (ddp), medida em Volts [V].
  • R: resistência elétrica, medida em Ohm [Ω].
  • i: corrente elétrica, medida em Ampere [A].

Como calcular a primeira lei de Ohm?

Do ponto de vista matemático, a primeira lei de Ohm é calculada por meio da fórmula apresentada anteriormente. Ela é usada quando lidamos com corrente, resistência ou diferença de potencial. Abaixo, vejamos um exemplo de cálculo.

  • Exemplo:

Um resistor de 50 Ω é percorrido por uma corrente elétrica de 15 mA. A diferença de potencial (ddp) entre os terminais do resistor possui qual valor?

Resolução:

Inicialmente, utilizaremos a fórmula da primeira lei de Ohm:

Lembrando que m  em 15 mA é “micro”, cujo valor é

, substituiremos os valores dados e encontraremos a ddp correspondente:

Faremos primeiro a multiplicação para depois resolvermos os expontes:

Transformando 750 em notação científica e resolvendo os expontes, temos:

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!
Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco

quarta-feira, 12 de julho de 2023

Alimentos energéticos: essenciais para a qualidade de vida


Alimentos energéticos: essenciais para a qualidade de vida


Os alimentos energéticos são indispensáveis para o fornecimento de energia para o organismo. Durante o processo de digestão, esses alimentos, ricos em carboidratos, são transformados em glicose e assim  fornecem energia para o corpo. 


Sem eles, uma simples caminhada seria inviável e até mesmo nossas funções neurais seriam prejudicadas. Batatas, arroz, aipim, pães e massas são exemplos de alimentos energéticos e que devem fazer parte da sua alimentação.


Embora os alimentos energéticos sejam frequentemente considerados prejudiciais à boa forma, não é preciso temê-los. Em uma dieta equilibrada e rica em nutrientes, combinada com um estilo de vida ativo, esses alimentos podem ser consumidos sem culpa.


No entanto, é importante lembrar que o nutricionista é o profissional mais adequado para orientar sobre o plano alimentar ideal, personalizado para cada indivíduo e suas necessidades específicas, independentemente do objetivo desejado - perda de peso, ganho de massa muscular ou reeducação alimentar.

 

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!
Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco

 

Alimentos reguladores: fornecem disposição para o dia a dia


Alimentos reguladores: fornecem disposição para o dia a dia


Os alimentos reguladores são fontes de fibras, vitaminas e  minerais. Como o próprio nome revela, eles atuam na regulação das funções básicas do nosso organismo, como, por exemplo, o funcionamento do intestino, equilíbrio da microbiota intestinal  e até mesmo no fortalecimento da imunidade.


Frutas, legumes e hortaliças são os principais alimentos reguladores e não devem faltar na sua alimentação. Uma dieta com falta desses alimentos pode causar deficiências nutricionais, que podem causar desde o enfraquecimento dos cabelos e das unhas até mesmo problemas de memória.

 

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!
Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco

 

Alimentos construtores: atuam no fortalecimento e regeneração de tecidos




Alimentos construtores: atuam no fortalecimento e regeneração de tecidos


Os alimentos construtores são ricos em proteínas e atuam na regeneração e na formação de novos tecidos no corpo humano. 


Carnes animais, ovos, laticínios e leguminosas (feijão, soja, ervilha, lentilha, grão-de-bico, etc) se destacam entre os principais alimentos construtores. 


Esse grupo alimentar é fundamental para pessoas que querem manter ou aumentar a massa muscular, ou para quem está em algum processo de cicatrização da pele. . 


Além desses benefícios, os alimentos construtores ajudam no bom funcionamento da imunidade e trabalham também na formação de hormônios, ajudando a regular o metabolismo.


Você sabia que esses alimentos são indicados para atletas, crianças e até mesmo idosos? Nos casos dos atletas, os alimentos construtores ajudam na manutenção e ganho de massa muscular. 


Por sua vez, crianças e adolescentes necessitam desses alimentos para o processo de desenvolvimento e crescimento. Já no caso dos idosos, os alimentos construtores ajudam a prevenir e retardar a perda de massa muscular.

 

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!
Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco

 

sexta-feira, 9 de junho de 2023

Tantas lutas pelo comércio de especiarias e você usando tempero artificial!



Definição (o que são) e exemplos

As especiarias são temperos (condimentos) usados na culinária para proporcionar sabores diferentes nas comidas. Algumas especiarias também eram e ainda são utilizadas na fabricação de cosméticos, óleos e medicamentos. As principais são: pimenta, gengibre, cravo, canela, noz-moscada, açafrão, cardamomo e ervas aromáticas.

 

As especiarias na História

Na época das Grandes Navegações e Descobrimentos Marítimos (séculos XV e XVI) eram muito valorizadas na Europa, pois não podiam ser cultivadas neste continente em função do clima. O surgimento e crescimento da burguesia também aumentou a demanda por produtos considerados de luxo na época, como, por exemplo, as especiarias.

No século XV, os comerciantes de Gênova e Veneza, cidades italianas, tinham o monopólio destas especiarias. Compravam no Oriente, principalmente na Índia e China, e vendiam com alta porcentagem de lucro no mercado europeu. Estas especiarias eram levadas para Europa através da rota do Mar Mediterrâneo, dominada pelos comerciantes italianos.

No século XVI, os portugueses descobriram uma rota alternativa para chegar ao oriente, através da navegação pela costa africana. Passaram a comprar as especiarias diretamente na fonte e tiraram o monopólio dos italianos. As caravelas portuguesas chegavam à Europa carregadas de especiarias, que eram vendidas com altas taxas de lucro. Portugal se tornou uma potência econômica da época.

 

Quais riscos os temperos industrializados representam à saúde?

Os temperos industrializados são um dos alimentos mais consumidos pelo brasileiro e representam uma forma prática e rápida para serem utilizados durante o preparo das refeições. Contudo, essa praticidade pode comprometer à saúde, como aponta a nutricionista  Caroline Gargantini. “Temperos industrializados são muito práticos, além de realçarem o sabor da comida, porém, os consumidores não sabem o que ingerem - quando consomem esse tipo de produto. Normalmente, eles contém excesso de sódio, glutamato monossódico (GSM), aromatizantes e conservantes artificiais. É muito comum as pessoas relatarem mal-estar depois de ingerirem uma comida com essa substância", afirma.

 De acordo com a nutricionista, ao longo dos anos, segundo o FDA (agência regulatória para alimentos, medicamentos e cosméticos dos Estados Unidos), alguns sintomas foram relacionados ao seu consumo como dores de cabeça, aceleração dos batimentos cardíacos, dores no peito, dormência ou formigamento no rosto e pescoço, asma, palpitações e sudorese. “ Por isso, é importante evitar o consumo desses caldos de legumes em cubos e temperos prontos em pó”, pontua.

O nutricionista Rubens Gomes também enfatiza que esses produtos estimulam “doenças silenciosas” ao organismo humano. “Quando se fala em glutamato monossódico, fala-se de uma substância que causa reações adversas como as alergias cutâneas, náuseas, vômitos, enxaquecas, asma, taquicardia, tonturas e depressão”, declara. 

Mas, contudo, será que isso significa optar por comida sem sal? A educadora física Dora Rodrigues discorda. Para ela, não é preciso preciso abolir o sal, mas tomar cuidado quanto ao exagero. “Claro que o excesso do sal não é bem-vindo, aumenta a retenção de líquidos no organismo e pode elevar a pressão arterial, mas o que a maioria das pessoas não leva em consideração é que o sal entrega todos os dias um mineral fundamental e essencial para a ativação do metabolismo,  que é o Iodo”, afirma. Dora destaca ainda que o equilíbrio entre o uso do sal, a variação e abundância de temperos naturais ressaltam os sabores dos alimentos e favorecem o fornecimento de micronutrientes fundamentais para a saúde. 

 

Alhos fritos vendidos em supermercados

Além dos temperos industrializados, alhos fritos encontrados em supermercados também devem ser evitados, de acordo com os especialistas. “A primeira vista, esses produtos parecem inocentes e muito práticos, mas ao verificar o rótulo, notamos que também tem sódio. Contudo, o mais preocupante, é perda do valor nutricional. Logo de início, 90% da alicina [agente antibacteriano, dentre outros benefícios] existente no alho cru, é perdida. E depois de 45 dias de armazenamento essa substância é inexistente”, pontua a nutricionista Caroline Gargantini.

A especialista ainda ressalta que todo tipo de preparação com o alho, leva a perdas nutricionais e funcionais, mas a situação se agrava, de fato, quando ocorre a fritura. “O mais recomendado é colocar o tempero junto com a comida para cozinhar”, complementa. 

 

Substituir o tempero industrializado por opções naturais 

O nutricionista Rubens Gomes orienta optar pelo sal (sem exageros), além de temperos naturais que incluem opções como: coentro, salsa, cebolinha, manjericão, cardamomo, orégano, alho, etc. “Essas alternativas conferem  sabor inigualável e podem fornecer micronutrientes importantes à saúde, ao contrário dos temperos industriais artificiais”, afirma. 

Já Carolina Gargantini também cita especiarias como alecrim, orégano, dentre outros. “Então, a dica é que sempre que possível, cozinhe com alimentos frescos, naturais e saudáveis. Planeje sua refeição. Invista na sua qualidade de vida e sua saúde agradecerá”, finaliza.

 

 

PARA SABER MAIS, ACESSE NOSSAS REDES SOCIAIS, SIGA O SUPER REFORÇO E FALE CONOSCO!
Siga-nos no Instagram!Siga o @superreforco no Instagram e compartilhe com seus amigos!

Siga-nos no Twitter!Segue a gente no Twitter: https://twitter.com/SuperReforco

Curta a nossa Fan Page!Curta nossa Fan Page no Facebook: https://www.facebook.com/SuperReforco